
FATCOP: A Fault Tolerant Condor-PVM Mixed Integer
Program Solver *

Qun Chen Michael C. Ferris
Dept. of Industrial Engineering Department of Computer Sciences

University of Wisconsin-Madison University of Wisconsin-Madison
Madison, WI 53706 Madison, WI 53706

email: chenq@cae.wisc.edu email: ferris@cs.wisc.edu

March 17, 1999

Abstract

We describe FATCOP, a new parallel mixed integer program solver written in PVM.
The implementation uses the Condor resource management system to provide a virtual
machine composed of otherwise idle computers. The new solver differs from previous
parallel branch-and-bound work by implementing a general purpose parallel mixed integer
programming algorithm in an opportunistic multiple processor environment, as opposed
to a conventional dedicated environment. It shows how to make effective use of resources
as they become available while ensuring the program tolerates resource retreat. The
solver performs well on test problems arising from real applications, and is particularly
useful for solving long-running hard mixed integer programming problems.

1 Introduction

Mixed integer programming (MIP) problems are difficult and commonplace. For many of
these hard problems, only small instances can be solved in a reasonable amount of time on
sequential computers. Therefore, mixed integer programming has been a frequently cited
application of parallel computing. Most available general-purpose large-scale MIP codes
use branch-and-bound (BB) to search for an optimal integer solution by solving a sequence
of related linear programming (LP) relaxations that allow possible fractional values. This
paper discusses a new parallel mixed integer program solver, written in PVM, that runs in the
opportunistic computing environment provided by the Condor resource management system.

Parallel BB algorithms for MIP have attracted many researchers [9, 13, 15]. Most parallel
BB programs were developed to run using large centralized mainframes or big-iron supercom-
puters that are typically very expensive. Users of these facilities usually only have a certain
amount of time allotted to them and have to wait their turn to run their jobs. However,
due to the decreasing cost of lower-end workstations, large heterogeneous clusters of work-
stations connected through fast local networks are becoming common in work places such as
universities, research institutions, etc. In this paper we shall refer the former resources as

'This material is based on research supported in part by National Science Foundation Grants CDA-9726385
and CCR-9619765 and Air Force Office of Scientific Research Grant F49620-98-1-0417.

—«5ÜS5 DISTRIBUTION STATEMENT A
Approved for Public Release

20000403 091 ' DistributionUnlimi,ed
AQnz oo -öG>~ ! ^Q?o

dedicated resources and the later as distributed ownership resources. The principal goal of
the research outlined in this paper is to exploit distributed ownership resources to solve large
mixed integer programs. We believe that a parallel BB program developed to use this type
of resource will become a widely used tool for such problems.

PVM (parallel virtual machine) [12] is a parallel programming environment that allows a
heterogeneous network of computers to appear as a single concurrent computational resource.
It provides a unified framework within which parallel programs for a heterogeneous collection
of machines can be developed in an efficient manner. However PVM is not sufficient for
us to develop an efficient parallel BB program in a distributed ownership environment. The
machines in such an environment are usually dedicated to the exclusive use of individuals. The
application programming interface defined by PVM requires users explicitly select machines
on which to run their programs. Therefore they must have permission to access the selected
machines and cannot be expected to know the load on the machines in advance. Furthermore,
when a machine is claimed by a PVM program, the required resources in the machine will be
"occupied" during the life cycle of the program. This is not a desirable situation when the
machine is owned by a person different from the user of the program.

Condor [6, 10, 17], a distributed resource management system, can help to overcome the
problems a normal PVM program runs into. Condor manages large heterogeneous clusters
of machines in an attempt to make use of the idle cycles of some users' machines to help
satisfy the needs of others who have computing extensive jobs. It was first developed to run
sequential programs. The current version of Condor provides a Condor-PVM framework to
run parallel programs written in PVM in a distributed ownership environment. In such pro-
grams, Condor is used to dynamically construct PVM virtual machine out of non-dedicated
desktop machines on the network. Condor allows users' programs to run on any machine
in the pool of machines managed by Condor, regardless of whether the user submitting the
job has an account there or not, and guarantees that heavily loaded machines will not be
selected for an application. To protect a machine's owner, Condor interrupts a running job in
a machine submitted by another user after the machine's owner returns. Since resources man-
aged by Condor are competed for by owners and many other Condor users, we refer to such
resources as Condor's opportunistic resources and the Condor-PVM parallel programming
environment as the Condor-PVM opportunistic environment.

FATCOP represents a first attempt to develop a general purpose parallel solver for mixed
integer programs in Condor's opportunistic environment. It is implemented on top of SO-
PLEX , a simplex object-oriented linear programming solver developed by Roland Wunderling
[26]. FATCOP is written in the C++ programming language with calls to PVM library. It is
designed to make best use of participating resources managed by Condor while handling re-
source retreat carefully in order to ensure the eventual and correct completion of a FATCOP
job. Key features of FATCOP include:

• parallel implementation under Condor-PVM framework;

• greedy utilization of Condor's opportunistic resources;

• tolerance to resource failures;

• options on branching, searching and presolving similar to commercial software such as
CPLEX;

• the ability to process both industrial standard MPS format and GAMS model as input;

The remainder of this paper is organized as follows. Section 2 describes the BB algorithm
and the components of FATCOP that are implemented to ensure the BB algorithm generates
a reasonable search tree. Section 3 introduces Condor-PVM parallel programming framework
and the design of our parallel implementation. In section 4, we present some numerical results
that exhibit important features of FATCOP.

2 Components of Sequential Program

For expositional purposes, we review the basic sequential implementation of a BB MIP solver.
A MIP can be stated mathematically as follows:

min cTx
s.t. Ax < b

I < x <u
XJ ez Mjel

where Z denotes the integers, A is an m x n matrix, and 7 is a set of distinguished indices
identifying the integer variables.

Most integer programming textbooks [1, 20] describe the fundamental branch-and-bound
algorithm for the above MIP problem. Basically, the method explores a binary tree of sub-
problems. The key steps of BB are summarized below and the algorithm flowchart can be
found as Figure 1.
Algorithm Branch-and-Bound:

Step 0. Initialization:
Set iteration count k = 0 and incumbent (or upper bound of the MIP) Z* — oo.
Put the initial problem in the work pool containing subproblems that are not
examined yet.

Step 1. Branching:
Among the remaining subproblems in the work pool, select one according to some
search order. Among the integer-restricted variables that have a noninteger value in
the optimal solution for the LP relaxation of this subproblem, choose one according
to some branching rule to be the branching variable. Let XJ be this variable and
denote by X*A its value in the aforementioned solution. Branch from the node for the
subproblem to create two new subproblems by adding the respective constraints
Xj < [x*\ and Xj > [x*\ + 1.

Step 2. Bounding:
For each new subproblem, obtain its bound by applying the simplex method (or the
dual simplex method when reoptimizing) to its LP relaxation and use the value
of ZLP for the resulting optimal solution. The minimum value of such bounds
associated with subproblems in the work pool is referred to as lower bound of the
MIP.

Step 3. Fathoming:
For each new subproblem, apply the three fathoming tests given below, and discard
those subproblems that are fathomed by any of the tests.
Test 1: Its bound ZLP > Z*.
Test 2: Its LP relaxation has no feasible solutions.

L-:-:-,Mf'ri"«

__ 1
lülJ,;" fci.rtKi)

I x_

_fr-".
1 firk«F-*sr*«"lff;rä55jrx

r.;--fe £*' '^.-;ii;«--^;:t

; PiW'i u■%**<*&?<

?*» {.»',*-Irrf?

: j:^ttruiKitt^irsi

4
s«HSi «v-***

<::,: __,.-- 1_ W^\ 1
™_Jt m,

j ./ U> j-A-.: h-jtin, 1
1 •Sw «il -""" .. 1

Step 4.

Figure 1: Branch-and-bound algorithm

Test 3: The optimal solution for its LP relaxation has integer values for the integer-
restricted variables. If this solution is better than the incumbent, it becomes the
new incumbent and Test 1 is reapplied to all unfathomed subproblems with the
new Z*.

Optimal test:
Stop when there are no remaining subproblems. The current incumbent is optimal.
Otherwise, go to step 1.

The above description makes it clear that there are various choices to be made during the
course of the algorithm. We hope to find robust strategies that work well on a wide variety of
problems. The reminder of this section describes the algorithm components and FATCOP's
interfaces.

2.1 Branching rules

If there are many fractional variables in the solution to the LP relaxation, we must choose
one variable to be the branching variable. Because the effectiveness of the branch and bound
method strongly depends on how quickly the upper and lower bounds converge, we would
like to branch on a variable that will improve these bounds.

Several reasonable criteria exist for selecting branching variables. FATCOP currently
provides three variable selection options: pseudocost, maximum integer infeasibility and min-

imum integer infeasibility. Maximum integer infeasibility will generate two branches that are
more likely to differ from the current solution than other branch alternatives. The underlying
assumption is that the objective function values are more likely to degrade on both branches.
Hence such a branch would represent an influential variable. Minimum integer infeasibility
will generate one branch very similar to the current solution and one branch very different
from the current solution. The underlying assumption is that the similar branch is where a
solution lies and that the different branch will prove uninteresting [1]. Pseudocost attempts
to estimate the change rate in objective function value associated with a particular branch.
Since the pseudocost method is widely iised and known to be efficient [16], we set it as the
default branching strategy and briefly describe the method here.

We associate two quantities <fij and (/& with each integer variable Xj that attempts to
measure the per unit decrease in objective function value if we fix Xj to its rounded down
value and rounded up value, respectively. Suppose that Xj = \XJ\ + fj, with 0 < fj < 1.
Then by branching on XJ, we will estimate a decrease of DJ = </>7/j on the down branch and

a decrease of Dj~ — <frt{l — fj) on the up branch . The way to obtain the objective change

rate <pj and (/>+ is to use the observed change in objective function value:

zLP - zLP anA . Z+p - ZLP

9] 1-fj
^= LP , ^ and

where ZIP is the LP relaxation solution value, and Z~£p and Z^p are the LP relaxation
solution values at up and down branches respectively. Note that the above discussion is for
a particular node.

In the course of the solution process, the variable Xj may be branched on many times.
The pseudocosts are updated by averaging the values from all Xj branches. The remaining
issue is to determine to what values should the pseudocost be initialized. The question of
initialization is important, since the branching decisions made at the top of the tree are the
most crucial. If similar MIP problems have been solved before, we can use the previous results
to initialize pseudocosts for integer variables. If previous results are not available, we can
explicitly solve LPs to compute pseudocosts for candidate branching variables which have not
been branched yet. Our computational experience show that it is expensive to compute these
values explicitly, especially in case that the number of integer variables is large. Therefore, we
simply initialize the pseudocost Xj with its corresponding coefficient in the objective function
c,;. When taking a branching decision for subproblem P, the algorithm calculates a score Sj
for each Xj as suggested in [9]:

Sj = aQpj +a\DJ +a2Dj;

where pj is the user specified priority for Xj, pj = 0 if the priority is not specified, ceo, «1,0:2
are some constants, a.o usually is very big so that user specified priorities are predominant.
Normally the branching candidate variable with highest priority will be selected.

2.2 Searching rule

FATCOP provide five options for selecting a node from the remaining nodes:

1. Depth-first: The depth-first rule selects the node that was created most recently. The
depth-first rule has the advantage that it needs very small memory and usually finds a
feasible solution quickly.

2. Best-first: The best-first rule, as its name suggests, always selects the current node to
be the one whose LP solution is the smallest. Since the best-first rule always select the
most attractive subproblem, it will improve the algorithm's convergence speed.

3. Pseudocost-estimation: An estimation for the optimal value of an integer solution for
a node can be obtained from its LP solution and its branching candidates' pseudocost:

E = ZLP+ Y. mm{Df,Dr}
je{all branching candidates}

The pseudocost-estimation strategy selects the node with the best estimation from the
remaining nodes. Like depth-first search, it requires small memory and usually can
find good feasible solutions quickly. Therefore, pseudocost-estimation is often used to
attack complex MIP problems when the provable optimal solution is hard to obtain.

4. A mixed strategy of 1 and 2: This strategy expands the subproblems in the best-
first order, with an initial depth-first phase. The mixed strategy takes the advantage
of quickly finding a feasible solution by depth first, and fastest convergence by best
first. The central issue of this strategy is when the program should switch from 1 to 2.
Eckstein [9] suggested to compare the lower bound and upper bound of a MIP problem,
i.e. the BB algorithm pursues depth-first search as long as the the upper bound and
lower bound differs at least some fixed threshold percentage. Afterwards it expands
problems with best-first. When designing FATCOP, we propose to keep track of the
information about the number of node evaluations over which the best integer solution
has not been updated. FATCOP switches searching strategy from 1 to 2 after this
number exceeds a pre-specified fixed number. In practice we found that it was useful
to perform a short trial solve test on a MIP problem using depth-first strategy. If we
observe that the incumbent value keeps unchanged for long time after it was updated
for Ü times in the trial solve process, we then can let the program switch searching
rule at that point when we solve this problem using the mixed searching strategy. If U
is set to 0, the program will use pure best-first strategy, while U = oo implies a pure
depth-first strategy.

5. A mixed strategy of 1 and 3: This strategy is similar to strategy 4, but starts the
algorithm with pseudocost-estimation search first. Since pseudocost-estimation often
finds better solutions than depth first does, strategy 5 is set as default searching strategy
for FATCOP.

2.3 Preprocessing

Preprocessing refers to a set of simple reformulations performed on a problem instance to en-
hance the solution process. FATCOP incorporates some preprocessing techniques to identify
infeasibility and redundancies, to tighten bounds on variables, and to improve coefficients
of constraints. Preprocessing may reduce the size of a MIP problem as well as the integral-
ity gap, i.e., the difference between the optimal solution value and its LP relaxation. More
techniques for preprocessing and probing can be found in [24].

Without loss of generality we assume that the inequality currently under consideration is
of the form:

YL aJxJ ^ b

j

Define:

lj The lower bound of variable XJ;

UJ The upper bound of variable Xj\

Lmin The minimum possible value for left hand side of the constraint ;

Lmax The maximum possible value for left hand side of the constraint ;

L^in The minimum possible value for left hand side of the constraint without the term

ak*k\
Lmax The maximum possible value for left hand side of the constraint without the term

akxk;

The following techniques may allow problem reduction:

1. Simple presolving methods:

• remove empty row or column

• check infeasible or fixed variable: lj > Uj or lj = Uj

• remove singleton row and modify the corresponding bounds.

2. Identification of infeasibility:

3. Identification of redundancy:

4. Improvement of bounds: For each variable xk in the constraint, we have:

Lmin + akxk < Yl aixi ^ b

3

Then:
akxk <b- Lk

min

If ak > 0,
xk < min{(6 - L^in)/ak,uk}

If ak < 0,
xk > max{(6 - Lk

min)/ak, lk]

If xk is an integer constrained variable, the new upper and lower bounds should be
rounded down and up.

5. Improvement of coefficients: Define 8 = b — Z£,oa;. If xk is a binary variable and 5 > 0.
Both ak and b can be reduced by 6. One can easily checks the validity by setting xk to
0 and 1 respectively.

At the root node, FATCOP analyzes every row of the constraint matrix using the above
techniques. If, after processing, some variables are fixed or some bounds are improved, the
process is repeated until no further model reduction occurs.

2.4 Reduced Cost Checking

After solving subproblem P, one checks the LP reduced costs of all integer variables Xj that,
are not basic. If the absolute value of such a reduced cost exceeds Z* — Z^p, then Xj is
fixed at its present value in all of P's descendents. The reduced cost of variable Xj represents
the objective function value changing rate with respective to Xj. Therefore any descendant
solution with a different but still integral value of Xj would be bigger than Z*, hence would
necessarily be fathomed.

2.5 Interfaces

FATCOP accepts industrial standard MPS input as well as GAMS models. MPS [19] input
format was originally introduced by IBM to express linear and integer programs in a standard
way. All commercial LP and MIP software accept this format.

GAMS [4] is a high-level modeling system for mathematical programming. It takes as
input a description of a mathematical program in a form that people find reasonably natural
and convenient, and allows the solution output to be viewed in similar terms. GAMS is
tailored for complex, large scale modeling applications, and allows users to build large main-
tainable models that can be adapted quickly to new situations. We interfaced FATCOP to
GAMS using the GAMS 10 library. With the GAMS interface, FATCOP is able to exploit
larger classes of MIP problems.

3 Condor-PVM parallel implementation of FATCOP

In this section we first give a brief overview of Condor, PVM and the Condor-PVM parallel
programming environment. Then we discuss the parallel scheme we selected for FATCOP
and the differences between normal PVM and Condor-PVM programming. At the end of the
section, we present a detailed implementation of FATCOP.

3.1 Condor-PVM Parallel Programming Environment

Nowadays heterogeneous clusters of workstations are becoming an important source of com-
puting resources. Two approaches have been addressed to make effective use of such resources.
One approach provides efficient resource management by allowing users to run their jobs on
idle machines that belong to somebody else. Condor, developed at University of Wisconsin-
Madison, is one such system. It monitors the activity on all participating machines, placing
idle machines in the Condor "pool". Machines are then allocated from the pool when users
send job requests to Condor. Machines enter the pool when they become idle, and leave when
they get busy, i.e. the machines owner returns. When an executing machine becomes busy,
the job running on this machine is initially suspended in case the executing machine becomes
idle again within a timeout period. If the executing machine remains busy then the job must
be migrated to another idle workstation in the pool or returned to the job queue. For a job to
be restarted after migration to another machine a checkpoint file that allows the exact state
of the process to be re-created is required. This design feature ensures the eventual com-
pletion of a job. There are various priority orderings used by Condor for determining which
jobs and machines are matched at any given instance. Based on these orderings, sometimes
running jobs may be preempted to allow higher priority jobs to run instead. Condor is freely

Applk seism''
 JfTWC'S. --"

Mister'

..diicmcsi,.

. *
'•', fender

'<*■■*•■ ,v

i Ccsulor

"Child'
rvrM /-•t^

t'c'vIAMT

I'rocess SÖÖ
ChiLI '

Prcccsa

Figure 2: Architecture of Condor-PVM

available and has been used in a wide range of production environments for more than ten
years.

Another approach to exploit the power of workstation cluster is from the perspective of
parallel programming. Research in this area has developed message passing environments
allowing people to solve a single problem in parallel using multiple resources. One of the
most widely used message passing environments is PVM that was developed at the Oak Ridge
National Laboratory. PVM transparently handles all message routing, data conversion and
task scheduling across a network of incompatible computer architectures. The goal of PVM is
to make programming for a heterogeneous collection of machines straightforward. The PVM
system is composed of two parts. The first part is a daemon which resides on all the computers
making up the virtual machine. A virtual machine is created in each computer where PVM
applications run on. The second part of the system is the PVM library. It contains user-
callable routines for message passing, process spawning, virtual machine modification and
task coordination. A similar message passing environment is MPI [14]. Both systems center
around a message-passing model, providing point-to-point as well as collective communication
between distributed processes. The primary differences between the systems lie in their views
of the parallel computer. PVM's design centers around the idea of a virtual machine. This
virtual machine is very general and can encompass a nearly arbitrary collection of computing
resources, from desktop workstations to multiprocessors to massively parallel homogeneous
supercomputers. To provide uniform access to such a complex set of resources, PVM provides
process control and resource management functions that allow spawning and termination
of arbitrary processes and the addition and deletion of hosts at runtime. This flexibility,
however, comes at, the expense of communication performance. MPI foregoes this flexibility
in favor of optimal communication performance.

The development of resource management system and message passing environment has

been independent of each other for many years. Unfortunately, existing resource management
systems usually cannot bring resources together and message passing environments are not
able to use resources efficiently. Researchers at the University of Wisconsin-Madison recently
developed a parallel programming framework which interfaces Condor and PVM [22, 6]. The
reason to select PVM instead of MPI is that the implementation of MPI has no concept
of process control, hence cannot handle resource addition and retreat in a opportunistic
environment. Figure 2 shows the architecture of Condor-PVM. There are three processes
on each machine running a Condor-PVM application: PVM daemon, Condor process and
user application process. The Condor-PVM framework still relies on the PVM primitives
for application communication, but provides resource management which is suited to the
opportunistic environment provided by Condor. Each PVM daemon has a Condor process
associated with it, acting as the resource manager. The Condor process interacts with PVM
daemon to start tasks, send signals to suspend, resume and kill tasks, and receive process
completion information. The Condor process running on the master machine is special.
It communicates with Condor processes running on the other machines, keeps information
about the status of the machines and forwards resource requests to Condor central manager.
This Condor process is called the global resource manager. When a Condor-PVM application
asks for a host, the global resource manager communicates with Condor central manager to
schedule a new machine. After Condor grants a machine to the application, it starts a Condor
process (resource manager) and PVM daemon on the new machine. If a machine needs to
leave the pool, the resource manager will send signals to the PVM daemon to suspend tasks.
The master user application is notified of that via normal PVM notification mechanisms.

Compared with a conventional dedicated environment, the Condor-PVM opportunistic
environment has the following characteristics:

1. There usually are a large amount of heterogeneous resources available for an application,
but in each time instance, the amount of available resources is random, dependent on
the status of machines managed by Condor. The resources are also competed for by
owners and other Condor users.

2. Resources used by an application may exit during its life cycle.

3. The execution order of components in an application is highly non-deterministic, leading
to different solution and execution times.

Therefore a good Condor-PVM application should be tolerant to loss of resources (host
suspension and deletion) and dynamically adaptive to the current status of Condor pool in
order to make effective use of opportunistic resources.

3.2 Parallel Scheme for FATCOP

Three main approaches in designing parallel BB algorithms arc summarized in [13] . Approach
1 consists of solving LP relaxations in parallel for each subproblem to accelerate the execution.
This approach uses parallel LP solvers and the order of subproblems generated during the
execution of BB algorithm is fixed. Approach 2 introduces parallelism when building the
BB tree. It performs bounding operations on several subproblems simultaneously. This
approach may affect the order of subproblems generated during the expansion of the BB
tree. Hence more or less subproblems could be evaluated by the parallel program compared
with its sequential version. Such phenomena are known as search anomalies. Approach 3

10

consists of building several BB trees in parallel. The trees are built up by applying different
operations such as branching and searching. The information generated when building one
tree can be used for the construction of another. We choose the second approach to implement
FATCOP, since it is widely used and appropriate for the implementation under Condor-PVM
framework.

One more concern about the parallel BB algorithm is central versus decentralized control.
Recall in section 2 we used the notion of work pool, which is a memory location where
processors find and store the subproblems that are not yet examined yet. The centralized
parallel BB program has a single work pool and is usually implemented by using the master-
slave paradigm. One processor, called the master manages the work pool, and sends pieces of
work out to other processors, called slaves, that do some computation, and send the results
back to the master. This centralized parallel scheme suffers from a "bottleneck". When
using a large number of processors, the master can become a bottleneck in processing the
returned information, thus keeping slaves idle for large amounts of time. In decentralized
programs, each processor has its own local work pool. Sometimes these kind of programs are
called multi-pool programs, while centralized programs are called single-pool programs. The
central issue of this parallel scheme is load balancing. The parallel algorithm must make sure
that some processors do not run out of work while others have a large amount of tasks.

The Condor-PVM environment allows us to design both multi-pool and single-pool pro-
grams, since each machine in Condor pool has its own memory location. However, multi-pool
programs do not lend themselves to the Condor opportunistic environment. In such an envi-
ronment, any of the machines could be preempted and therefore disappear at any moment.
The pool of problems associated with the disappeared machine will be lost. A multi-pool
program usually allows communication between processors to exchange subproblems. This
feature makes it even harder for the program to keep track of the lost problems. On the
other hand, the master-slave model, as an example of single-pool program, can handle re-
source retreat well. The idea is that the master keeps track of which subproblem has been
sent to each slave, and does not actually remove the subproblem out of the work pool. All
the subproblems which are sent out are marked. If the master is then informed that a slave
has disappeared, it unmarks the subproblems assigned to that slave.

The remaining design issue is how to use the opportunistic resources provided by Condor
to adapt to changes in number of available resources. The changes include newly available
machines, machine suspension and resumption and machine failure. We hope to find a good
design that can handle changes in the size of the virtual machine naturally. In a conventional
dedicated environment, a parallel application usually is developed for running with a fixed
number of processors and the solution process will not be started until the required number
of processors are obtained and initialized. In Condor's opportunistic environment, doing so
may cause a serious delay. In fact the time to obtain the required number of new hosts from
Condor pool can be unbounded. Therefore we implement FATCOP in such a way that the
solution process starts as soon as it obtains a single host. The solver then attempts to acquire
new hosts as often as possible. At the beginning of the program, FATCOP places a number
of requests for new host in Condor. Whenever it gets a host, it requests a new host. Thus,
in each period between when Condor assigns a machine to FATCOP and when the new host
request is received by Condor, there is at least one "new host" request from FATCOP waiting
to be processed by Condor. This greedy implementation makes it possible for a FATCOP
job to collect a significant amount of hosts during its life cycle.

11

3.3 Differences between PVM and Condor-PVM programming

Regular PVM and Condor-PVM are binary compatible with each other. The same binary
which runs under regular PVM will run under Condor, and vice-versa. However there exist
some run time differences between regular PVM and Condor-PVM. The most important
difference is the concept of machine class. In a regular PVM application, the configuration
of hosts that PVM combines into a virtual machine usually is defined in a file, in which
host names have to be explicitly given. Under the Condor-PVM framework, Condor selects
the machines on which a job will run, so the dependency on host names must be removed
from an application. Instead the applications must use class names. Machines of different
architecture attributes belong to different machine classes. Machine classes are numbered 0,
1, etc. and hosts are specified through machine classes. A machine class is specified in the
submit-description file that is submitted to Condor.

Another difference is that Condor-PVM has "host suspend" and "host resume" notifica-
tions in addition to "host add", "host deletion" and "task exit" notifications that normal
PVM has. When Condor detects activity of a workstation owner, it suspends all Condor
processes running there rather than killing them immediately. If the owner remains for less
than a pre-specified cut-off time, the suspended processes will resume. To help an application
to deal with this situation, Condor-PVM make some above extensions to PVM's notification
mechanism.

The last difference is that adding a host is non-blocking in Condor-PVM. When a Condor-
PVM application requests a new host be added to the virtual machine, the request is sent to
Condor. Condor then attempts to schedule one from the pool of idle machines. This process
can take a significant amount of time. If there are no machines available in Condor's pool, the
delay can be longer. Therefore, Condor-PVM handles requests for new host asynchronously.
The application can start other work immediately after it sends out a request for new host. It
then uses the PVM notification mechanism to detect when the request has completed. People
interested in developing Condor-PVM applications should pay attention to these differences.
The documentation about the differences and a sample example code can be found in [6] and
Condor manual website at

http://www.cs.wisc.edu/condor/

FATCOP is first developed as a regular PVM application, and modified to exploit Condor-
PVM.

3.4 Parallel Implementation of FATCOP

FATCOP consists of two separate programs: the master program and the slave program.
The master program runs on the. machine on which the job was submitted to Condor. This
machine is supposed to be stable for the life of the run, so it is generally the machine owned
by the user. The design of FATCOP makes the program tolerant to any type of failures for
workers, but if the machine running the master program crashes due to either system reboot
or power outage, the program will be terminated. To make FATCOP tolerant even of the
master's failure, the master program writes information about subproblems in the work pool
periodically to a log file on the disk. Each time a FATCOP job is started by Condor, it reads
in the MIP problem as well as the log file that stores subproblem information. If the log file
does not exist, the job starts from the top of the search tree. Otherwise, it is warm started
from some point in the search process. The work pool maintained by the master program

12

''"öA^ • l'" <^;'—GAMS| *; Script | ♦) Condor

..fill ,

Figure 3: Interactions among Condor, FATCOP and GAMS

has copies for all the subproblems that were sent to the slaves, so the master program is able
to write complete information about the BB process to the log file.

Copies of the slave program run in the machines selected by Condor. The number of
copies of running slave programs changes over time during the execution of a FATCOP job.

3.4.1 The Master Program

FATCOP can take both MPS and GAMS models as input. The interactions among Condor,
FATCOP and GAMS are described as follows. A user starts to solve a GAMS model in the
usual way from the command line. After GAMS reads in the model, it generates an input
file. Control then is given to the user's control file, which usually is a shell or PERL script.
The script generates a Condor submit-description file and submits the job to Condor. The
submit-description file specifies the program name, input file name, requirement on machines'
architecture, operating system and memory etc. After submitting the job the script reads a
log file periodically until the submitted job is finished by Condor. The log file is generated
by Condor and records the status of the finished and executing jobs. Finally the script gives
control back to GAMS. GAMS then reports the solutions to the user. This process is depicted
in Figure 3.

The MIP model is stored globally as an LP and integrality constraints. The master
program first solves the LP. If it is infeasible or the solution satisfies the integrality constraints,
the master program stops. Otherwise, it starts a sequential MIP solve process until there are
N subproblems in the work pool. TV is a pre-defined number, which has a default value and
can be modified by users. This process is based on the observation that using parallelism
as soon as few subproblems become available may not be a good policy, since doing so may
expand more nodes compared to the sequential algorithm. In order to use all processors as

13

fVinrtn-r pint I

*,=-.,
i:5MT MVlti::w.zV

,,#" ,

Figure 4: Message passing inside FATCOP

soon as possible while avoiding giving them subproblems that only have a small chance of
leading to an optimal solution, we let the master perform a sequential algorithm up to a
point where N subproblems are available. The work pool consists of solved subproblems.
Associated with each subproblem is the LP relaxation solution and value, modified bound
information for the integer variables, pseudocosts used for searching and an optimal basis,
which is used for warm starting the simplex method. The subproblems in the work pool
are multi-indexed by bound, pseudocost-estimation and the order in which they entered the
pool. The indices correspond to different searching rules: best-first, pseudocost-estimation
and depth-first.

Following the initial subproblem generation stage, the master program sends out a number
of requests for new hosts. It then sits in a loop that repeatedly does message receiving.
The master accepts several types of messages from workers. The messages passing within
FATCOP are depicted in Figure 4.

After all workers have sent solutions back and the work pool becomes empty, the master
program kills all workers and exits itself.

Host Add Message. After the master is notified of getting a new host, it spawns a child
process there and sends an LP copy as well as a subproblem to the new child process. The
subproblem is marked in the work pool, but not actually removed from it. Thus the master is
capable of recovering from several types of failures. For example, the spawn may fail. Recall
that Condor takes the responsibility to find an idle machine and starts a PVM daemon on it.
During the time between when the PVM daemon was started and the message received by
master program, the owner of the selected machine can possibly reclaim it. If a "host add"
message was queued waiting for the master program to process other messages, a failure for
spawn becomes more likely.

14

The master program then sends out another request for a new host if the number of
remaining subproblems is at least twice as many as the number of workers. The reason for
not always asking for new host is that the overhead associated with spawning processes and
initializing new hosts is significant. Spawning a new process is not handled asynchronously
by Condor-PVM. While a spawn request is processed, the master is blocked. The time to
spawn a new process usually takes several seconds. Therefore if the number of subproblems
in the work pool drops to a point close to the number of workers, the master will not ask for
more hosts. This implementation guarantees that only the top 50% "promising" subprob-
lems considered by the program can be selected for evaluation. Furthermore, when the BB
algorithm eventually converges, this implementation prevents the program from asking for
excess hosts. However, the program must be careful to ensure that when the ratio of number
of remaining subproblems to number of hosts becomes bigger than 2, the master restarts
requesting host additions.

Solution Message. If a received message contains a solution returned by a worker, the
master will permanently remove the corresponding subproblem from the work pool that was
marked before. It then updates the work pool using the received LP solutions. After that, the
master selects one subproblem from the work pool and sends it to the worker which sent the
solution message. The subproblem is marked and stays in the work pool for failure recovery.
Some worker idle time is generated here, but the above policy typically sends subproblems
to workers that exploit the previously generated solution.

Host Suspend Message. This type of messages informs the master that a particular ma-
chine has been reclaimed by its owner. If the owner leaves within 10 minutes, the Condor
processes running on this machine will resume. We have two choices to deal with this situ-
ation. The master program can choose to wait for the solutions from this host or send the
subproblem currently being computed in this host to another worker. Choosing to wait may
save the overhead involved in solving the subproblem. However the waiting time can be as
long as 10 minutes. If the execution time of a FATCOP job is not significantly longer than
10 minutes, waiting for a suspended worker may cause a serious delay for the program. Fur-
thermore, the subproblems selected from the work pool are usually considered "promising".
They should be exploited as soon as possible. Therefore, if a "host suspend" message is
received, we choose to recover the corresponding subproblems in the work pool right away.
This problem then has a chance to be sent to another worker shortly. If the suspended worker
resumes later, the master program has to reject the solutions sent by it in order that each
subproblem is considered exactly once.

Host Resume Message. After a host resumes, the master sends a new subproblem to it.
Note that the master should reject the first solution message from that worker. The resumed
worker picks up in the middle of the LP solve process which was frozen when the host was
suspended. After the worker finishes solving the LPs, it sends the solutions back to the
master. Since the associated subproblem had been recovered when the host was suspended,
these solutions are redundant, hence should be ignored by the master.

Host Delete/ Task Exit Message. If the master is informed that a host is removed from
the PVM virtual machine or a process running on a host is killed, it recovers the corresponding
subproblem from the work pool and makes it available to other workers.

15

Name #rows ^columns #nonzeros ^integers
AIR05 426 7195 52121 7195
BELL5 91 104 266 58
BLEND2 274 353 1409 264
FIBER 363 1298 2944 1254
MAS76 12 151 1639 150
MISC07 212 260 8619 259
QIU 1192 840 3432 48
STEIN45 331 45 1034 30
V0D1 107 306 1207 303
PRODI 211 301 10501 200

Table 1: Summary of test problems

3.4.2 Slave Program

The slave program first receives a LP model from the master, then sits in an infinite loop
to receive messages from the master. The messages from the master consist of the modified
bound information about the subproblem P, the optimal basis to speed up the bounding
operation, and the branching variable which is used to define the "up" and "down" children
P+ and P—. The slave performs two bounding operations on P+ and P— and sends the
results back to the master. The slave program is not responsible for exiting its PVM daemon.
It will be killed by the master after the stopping criteria is met.

4 Computational Experience

One of FATCOP's goals is fault tolerance, i.e. solving MIP problems correctly using op-
portunistic resources. The other design purpose is to let FATCOP be adaptive to changes
in available sources provided by Condor in order to achieve maximum possible parallelism.
Therefore the principle measures we use when evaluating FATCOP are correctness of solu-
tions, and adaptability to changes in resources. Execution time should be another important
performance measure, but it is affected by many random factors and heavily dependent on
the availability of Condor's resources. For example a FATCOP job, that can be finished in
one hour at night, may take 2 hours to finish during the day because of the high competition
for the resources. In general, FATCOP should have shorter execution time than its serial
version for long-running MIP problems. This is confirmed by the results presented in this
section.

FATCOP has been tested on a set of problems drawn from MIPLIB [18],an electronically
available library of both pure and mixed integer programs arising from real applications.
The selected problems have relatively large search trees, so that some parallelism can be
exploited. Since Condor-PVM incurs some additional managerial and communication costs
to a FATCOP job, some problems with small search trees can be solved faster by the FATCOP
sequential program than its parallel version. We first used CPLEX [7] with default settings
to solve the problems in MIPLIB. We then picked 8 problems which cannot be solved by
CPLEX within 10.000 nodes. In order to demonstrate that FATCOP can also solve GAMS

16

60

50

40

30

20

10

Resources being us3d
Available Resources

10
Clock time

11 12 13 14

Figure 5: Resource utilization for one run of FATCOP

models, two problems formulated using GAMS are included in the test set. One problem
vodS is an application to video on demand system design [8]. The other problem prodl is an
application to product design [25]. These two problems are also insoluble in 10,000 nodes by
the CPLEX default MIP solver. The sizes of the problem instances are shown in Table 1.

4.1 Resource Utilization

In Wisconsin's Condor pool there are more than 100 machines in our desired class. Such large
amounts of resources make it possible to solve MIP problems with fairly large search trees.
However the available resources provided by Condor change as the status of participating
machines change. Figure 5 demonstrates how FATCOP is able to adapt to Condor's dynamic
environment. We submitted a FATCOP job to solve air05 at 6:30am. The job was finished
by Condor at about 13:10. Each time a machine was added or suspended, the program asked
Condor for the number of idle machines in our desired machine class. We plot the number
of machines used by the FATCOP job and the number of machines available to the job in
Figure 5. In the figure, time goes along the horizontal axis, and the number of machines
is on the vertical axis. The solid line is the number of working machines and dotted line is
the number of available machines which includes idle machines and working machines used
by our FATCOP job. At the start, there were many idle machines in Condor pool. The
job quickly got about 20 machines and eventually collected more than 40 machines with a
speed of roughly one new resource every minute. However it was not able to acquire many
machines after 7:00am and lost a large amount of machines between 8:00 to 9:00. There
were some newly available resources at 8:30 and 10:00, but they became unavailable again

17

Run Starting time Duration ■*-Ja.vg Number of suspensions
1 06:30 6.7 hrs 28 45
2 08:15 6.8 hrs 31 51
3 14:55 6.1 hrs 46 43
4 15:02 6.1 hrs 42 50
5 20:10 5.9 hrs 61 39
6 21:42 6.0 hrs 51 58

Table 2: Average number of machine and suspensions for 6 FATCOP runs

quickly, either reclaimed by owners or scheduled to other users by Condor. At about 12:00,
another group of machines became available and stayed idle for a relatively long time. The
job thus acquired some additional machines during that time. In general, the number of idle
machines in Condor pool had been kept at a very low level during life cycle of the FATCOP
job except during the start-up phase. When the number of idle machines stayed high for
some time, FATCOP was able to quickly increase the size of its virtual machine. We believe
these observations exhibit that FATCOP can utilize opportunistic resources very well.

To get more insight about utilization of opportunistic resources by FATCOP, we define
the average number of machines used by a FATCOP job Eavg as:

E,na*

E krk
k=\ E =

where r^ is the total time when the FATCOP job has k workers, T is the total execution
time for the job, Emax is the number of available machines in the desired class. We ran 6
replications on air05. The starting time of these runs is distributed over a day. In Table 2
we record the average number of machines the FATCOP job was able to use and number
of machines suspended during each run. The first value shows how much parallelism the
FATCOP job can achieve and the second value indicates how much additional work had to
be done. In general the number of machines used by FATCOP is quite satisfactory. For run
5, this value is as high as 61 implying that on average FATCOP used about 60% of the total
machines in our desired class. However, the values vary greatly due to the different status
of the Condor pool during different runs. In working hours it is hard to acquire machines
because many of them are used by owners. After working hours and during the weekend
only other Condor user's are our major competitors. As expected FATCOP lost machines
frequently during the daytime. However during the runs at night FATCOP also lost many
machines. It is not surprising to see this, because the more machines FATCOP was using,
the more likely it would lose some of them.

4.2 Fault tolerance

For all the test problems in Table 1 except bell5, FATCOP was configured to use pseudocost
branching and pseudocost-estimation based mixed searching strategy (strategy 5). It turned
out that depth-first based mixed strategy (strategy 4) worked best for bell5. We performed a
trial solve for each problem to decide the value of U as introduced in section 2.2. Recall U = oo
implies a pure pseudocost-estimation search, and U = 0 implies a pure best-first search. The

18

Name Solution Provable Execution Tree U
gap(%) optimal? time size

AIR05 2 no 8 hrs 1,615 oo
BELL5 0 yes S.lhrs 71,823 1
BLEND2 0 yes 9.9 min. 1,548 0
FIBER 57 no 8 hrs 120,432 00

MAS 76 0 no 8 hrs 162,176 00

MISC07 0 yes 1.9 hrs 10,785 6
QIU 0 no 8 hrs 22,004 3
STEIN45 0 yes 3.5 hrs 52,557 1
V0D3 0 yes 30.2 min 6,201 7
PRODI 3 no 8 hrs 32,524 00

Table 3: Results obtained by the FATCOP sequential solver

Name Execution time Tree size F, # of suspensions
AIR05 6.0 hrs 4,142 46 51
BELL5 41.8 mins 39,026 20 19
BLEND2 11.0 mins 2,589 10 0
FIBER 4.5 hrs 231,887 52 81
MAS76 1.2 hrs 420,418 38 5
MISC07 1.0 hrs 9,491 22 15
QIU 5.4 hrs 66,180 57 51
STEIN45 1.3 hrs 55,110 41 17
VOD3 19.5 min 6,540 11 1
PRODI 5.5 hrs 98,227 48 49

Table 4: Average results obtained by the FATCOP parallel Condor-PVM solver for 3 repli-
cations (all instances are solved to optimality)

Execution time Tree size
sequential parallel sequential parallel

BELL5 5.1 hrs 41.8 mins 71,823 39,026
BLEND2 9.9 min. 11.0 min. 1,548 2,598
MISC07 1.9 hrs 1.0 hrs 10,785 9,491
STEIN45 3.5 hrs 1.3 hrs 52,557 55,110
VOD3 30.2 min 19.5 min 6,201 6,540

Table 5: Comparison between the FATCOP sequential and parallel solver for the problems
solved to optimality by both

19

parameters for computing scores of branching variables are set as follows: O.Q = 100,«i = 1,
and a2 = 1- The MIPLIB files do not provide branching priorities, so the value of «o is
irrelevant to problems from MIPLIB. However the priority information about integer variables
is critical to solve vod in a reasonable amount of time.

We first solved the problems in Table 1 using the FATCOP sequential solver on a SUN
Sparc SOLARIS2.6 machine. Each run was limited by 8 hours. We present the results in
Table 3. The first column in the table shows the relative difference between the best solution
found by the FATCOP sequential solver and the known optimal solution. If the optimal
solution is found, column 2 shows whether the solution is a proven optimal solution or not.
Execution time in column 3 is clock elapsed time, and does not include GAMS compilation
and solution report time. Tree size at the time when the program was terminated is given in
column 4. The last column reports the parameter U we set for each problem. The FATCOP
sequential solver is able to find provable optimal solutions for half of the test problems.

The test problems then were solved by the FATCOP parallel Condor-PVM solver. The
number of problems N generated in the initial stage was set to 20. At the beginning the
master sends 40 requests for new hosts to Condor. FATCOP implements an asynchronous
algorithm, hence communication may occur at any time and is unpredictable. Furthermore,
the number of workers in the life cycle of a FATCOP job keeps changing so that the BB
process may not follow the same path for different executions. Our experiments show that
the search trees were almost never expanded in the same order for a given problem. This
feature often leads FATCOP to different execution time. We ran 3 replications for each
problem. For all the runs, FATCOP found provable optimal solutions for the test problems,
including fiber that can not be solved effectively by the sequential solver. We report the
average execution time, search tree size, resource utilization and resource losses in Table 4.
For all runs except four, FATCOP lost some workers, but the program recovered correctly
and returned correct solutions. Therefore FATCOP was tolerant to the resource retreats in
our experiments. During one run for solving fiber, FATCOP lost many machines because it
ran over the daily Computer Sciences Department reboot period.

We compare the results obtained by sequential solver on problems that it solved to op-
timality with those obtained by the parallel solver in Table 5. Of the problems solved to
optimality by the FATCOP sequential solver, blend2 solves quicker using the sequential code,
between the sequential and parallel solver. Stein45 and vodS require a few more node eval-
uations (but less time) by the parallel solver, while bell5 and miscOl solve quicker with the
parallel solver. Run time for bell5, stein45, vodS and miscOl is reduced by factors between
0.6 — 6.5. Table 4 shows that FATCOP was able to collect many machines during its ex-
ecution, but many factors prevent further speedup. These factors include long starvation
for workers, enlarged search trees, resource failures, and inefficient communication due to
PVM's nature. For blend2, the parallel solver even took longer than the serial code to solve
the problem. We keep this problem in the test set to show that it is only beneficial to use
FATCOP to solve long-running complex MIPs.

The last experiment we performed submitted a long-running MIP problem to Condor. The
problem we solved vpml is also from MIPLIB that has 234 constraints and 378 variables, of
which 168 are integers. The FATCOP sequential solver could not find the provable optimal
solution for this problem in 8 hours. We configured the parallel solver to use pure pseudocost-
estimation searching and pseudocost branching. Our experiments showed that pseudocost-
estimation searching strategy usually keeps a very small work pool, so the program requires
small memory and takes relatively short time to write the work pool information to the disk.

20

The strategy also is able to find good feasible solutions quickly, so it is particularly suitable
for long-running big problems. The job finished in 39.2 hours with provable optimality. It ran
over two Computer Sciences Department daily reboot periods, used 21 machines on average
and had 447 machines suspended during the run. To test fault tolerance of the master,
we let FATCOP record the work pool information to disk every 100,000 node evaluations..
We interrupted the job once (to simulate a master failure) and re-submitted the problem
to Condor. FATCOP then read in the MIP problem as well as the work pool information,
and started from where the work pool information was last recorded. This indicates that
FATCOP is tolerant to both worker and master failures.

5 Summary

MIPs often represent critical decision problems in industry, but many of them cannot be
solved sequentially on a single computer. In this paper, we provide a parallel implementation
for MIPs using distributed privately owned workstations.

The solver, FATCOP, is designed in the master-slave paradigm to deal with different types
of failures in a distributed ownership environment with the help of Condor, a resource man-
agement system. To harness the available computing power as much as possible, FATCOP
uses a greedy strategy to acquire machines.

FATCOP has successfully solved some real life MIP problems such as the applications to
video on demand system design [8] and product design [25]. It was also tested on a set of
standard test problems from MIPLIB [18]. FATCOP was able to solve some problems which
can not be solved by its sequential version, and achieved speedup of factors between 0.6 — 6.5
for some reasonable large problems soluble by its sequential version. We leave experiments
on MIP problems requiring days or months of computation as future work. Problems with
extremely large search trees were excluded from our test set, since they remained insoluble in
a reasonable amount of time. Solving such problems may require some specialized techniques.
For example recent work that combines BB with cutting planes has been very successful [5].
Adding cutting planes at the top of node for BB algorithm can substantially reduces the size
of the search tree, and the overall computation time. This cut-and-branch framework might
be used in a future version of FATCOP.

6 Acknowledgement

The authors are grateful to both Miron Livny and Michael Yodcr for advice and assistance
in using Condor and the Condor-PVM environment. We also wish to thank Jeff Linderoth
for his very insightful comments.

References

[1] M. Avriel and B. Golany. Mathematical Programming for Industrial Engineers. Marcel
Dekker, 1996.

[2] E. Balas and C. H. Martin. Report on the session on branch and bound/implicit enu-
meration, in discrete optimization. Annals of Discrete Optimization, 5, 1979.

21

[3] M. Benichou and J. M. Gauthier. Experiments in mixed-integer linear programming.
Management Science, 20(5):736-773, 1974.

[4] A. Brooke , D. Kendrick and A. Meeraus. GAMS: A user's Guide. The Scientific Press,
South San Francisco, CA, 1988.

[5] S. Ceria, C. Cordier, H. Marchand and L. A. Wolsey. Cutting planes for integer programs
with general integer variables. Mathematical Programming, 81(2):201-214, 1998.

[6] Condor Group, University of Wisconsin, Madison. Condor Version 6.0 Manual. 1998.

[7] CPLEX Inc.. GPLEX Optimizer.

[8] D. L. Eager, M. C. Ferris and M. K. Vernon. "Optimal Regional Caching for On-Demand
Data Delivery," to appear in Proc. 1999 Multimedia Computing and Networking (MMCN
'99), San Jose, CA, January 25-27, 1999.

[9] J. Eckstein. Parallel Branch-and-bound Algorithm for General Mixed Integer Program-
ming on the CM-5. SIAM J. Optimization, 4(4):794-814, 1994.

[10] D. H. Epema, M. Livny et al. A worldwide flock of condors: load sharing among work-
station clusters. Journal on Future Generations of Computer System,1996.

[11] J. Forrest et al. Practical solution of large scale mixed integer programming problems
with UMPIRE. Annals of Discrete Optimization, 5, 1979.

[12] A. Geist, A. Beguelin et.al. PVM: Parallel Virtual Machine - A user's Guide and Tutorial
for Networked Parallel Computing. The MIT Press, Cambridge, Massachusetts, 1994.

[13] B. Gendron and T. G. Crainic. Parallel Branch-and-Bound algorithms: survey and sys-
thesis. Operations Research, 42(6):1042-1060, 1994.

[14] W. Gropp, E. Lusk, A. Skjellum. Using MPI : portable parallel programming with the
message-passing interface. The MIT Press, Cambridge, Massachusetts, 1994.

[15] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and architectures.
Tech. Report TR 91-18, Department of Computer Science, University of Minnesota,
1991.

[16] J. Linderoth and M. W. P. Savelsbergh. A Computational Study of Search Strategies for
Mixed Integer Programming. Report LEC-97-12, Georgia Institute of Technology, 1997.

[17] M. J. Litzkow, M. Livny et al. Condor - A hunter of idle workstations in Proceedings
of the 8th International Conference on Distributed Computing Systems, Washington,
District of Columbia, IEEE Computer Society Press, 108-111, 1988.

[18] R. E. Bixby, S. Ceria, C. M. McZeal and M.W.P. Savelsbergh. MIPLIB 3.0
http: //www. caam. rice, edu/bixby/miplib/miplib. html.

[19] J. L. Nazareth. Computer Solution of Linear Programs Oxford University Press, 1987.

[20] G. L. Nemhauser, L. Wolsey. Integer and Combinatorial Optimization Wiley Interscience,
1989.

22

[21] G. L. Nemhauser, M. W. P. Savelsbergh and G.S. Sigismondi. MINTO, a Mixed Integer
Optimizer. Oper. Res. Letters, 15:47-58, 1994.

[22] J. Pruyne, M. Livny. Providing Resource Management Services to Parallel applications.
Proceedings of the Second Workshop on Environments and Tools for Parallel Scientific
Computing, May, 1994-

[23] E. A. Prunl and G. L. Nemhauser. Branch-and-Bound and parallel computation: a his-
torical note. Oper. Res. Letters, 7:65-69. 1988.

[24] M. W. P. Savelsbergh. Preprocessing and Probing for Mixed Integer Programming Prob-
lems. ORSA J. on Computing, 6: 445-454, 1994.

[25] L. Shi, S. Olafsson and Q. Chen. An optimization framework for product design, sub-
mitted to Management Science, 1998.

[26] R,. Wunderling. Documentation of the SOPLEX library.

http:/'/www. zib. de/Optimization/Software/Soplex/.

23

INTERNET DOCUMENT INFORMATION FORM

A. Report Title: FATCOP: A Fault Tolerant Condor-PVM Mixed Integer
Program Solver

B. DATE Report Downloaded From the Internet: 03/31/99

C. Report's Point of Contact: (Name, Organization, Address, Office
Symbol, & Ph #): Carnegie Mellon

5000 Forbes Ave
Pittsburgh, PA 15213
(412)268-2000

D. Currently Applicable Classification Level: Unclassified

E. Distribution Statement A: Approved for Public Release

F. The foregoing information was compiled and provided by:
DTIC-OCA, Initials: _VM_ Preparation Date 03/31/99

The foregoing information should exactly correspond to the Title, Report Number, and the Date on
the accompanying report document. If there are mismatches, or other questions, contact the
above OCA Representative for resolution.

